Overview

Dataset statistics

Number of variables2
Number of observations361
Missing cells0
Missing cells (%)0.0%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory5.8 KiB
Average record size in memory16.4 B

Variable types

NUM1
DATE1

Warnings

DATE has unique values Unique
PORANGUSDM has unique values Unique

Reproduction

Analysis started2020-10-25 20:11:12.327017
Analysis finished2020-10-25 20:11:13.339715
Duration1.01 second
Software versionpandas-profiling v2.9.0
Download configurationconfig.yaml

Variables

DATE
Date

UNIQUE

Distinct361
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Memory size2.8 KiB
Minimum1990-01-01 00:00:00
Maximum2020-01-01 00:00:00
2020-10-25T20:11:13.439158image/svg+xmlMatplotlib v3.3.2, https://matplotlib.org/
2020-10-25T20:11:13.679146image/svg+xmlMatplotlib v3.3.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)

PORANGUSDM
Real number (ℝ≥0)

UNIQUE

Distinct361
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean1.194204671
Minimum0.56105
Maximum2.172547619
Zeros0
Zeros (%)0.0%
Memory size2.8 KiB
2020-10-25T20:11:13.913485image/svg+xmlMatplotlib v3.3.2, https://matplotlib.org/

Quantile statistics

Minimum0.56105
5-th percentile0.7371818182
Q10.9244318182
median1.15725
Q31.428714286
95-th percentile1.86452381
Maximum2.172547619
Range1.611497619
Interquartile range (IQR)0.5042824675

Descriptive statistics

Standard deviation0.3473087284
Coefficient of variation (CV)0.2908284793
Kurtosis-0.400216634
Mean1.194204671
Median Absolute Deviation (MAD)0.2507738095
Skewness0.5405907172
Sum431.1078862
Variance0.1206233528
MonotocityNot monotonic
2020-10-25T20:11:14.134433image/svg+xmlMatplotlib v3.3.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%) 
1.74647826110.3%
 
1.08435714310.3%
 
1.39888095210.3%
 
1.44836842110.3%
 
1.18086363610.3%
 
1.8645238110.3%
 
1.52773809510.3%
 
1.37465789510.3%
 
1.01495454510.3%
 
1.38881818210.3%
 
Other values (351)35197.2%
 
ValueCountFrequency (%) 
0.5610510.3%
 
0.576619047610.3%
 
0.59454761910.3%
 
0.609684210510.3%
 
0.612130434810.3%
 
ValueCountFrequency (%) 
2.17254761910.3%
 
2.0360238110.3%
 
2.01269047610.3%
 
2.01227510.3%
 
2.0032510.3%
 

Interactions

2020-10-25T20:11:12.703377image/svg+xmlMatplotlib v3.3.2, https://matplotlib.org/

Correlations

2020-10-25T20:11:14.324673image/svg+xmlMatplotlib v3.3.2, https://matplotlib.org/

Pearson's r

The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.

To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
2020-10-25T20:11:14.500211image/svg+xmlMatplotlib v3.3.2, https://matplotlib.org/

Spearman's ρ

The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.

To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
2020-10-25T20:11:14.689193image/svg+xmlMatplotlib v3.3.2, https://matplotlib.org/

Kendall's τ

Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.

To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.

Missing values

2020-10-25T20:11:13.008214image/svg+xmlMatplotlib v3.3.2, https://matplotlib.org/
2020-10-25T20:11:13.173629image/svg+xmlMatplotlib v3.3.2, https://matplotlib.org/

Sample

First rows

DATEPORANGUSDM
01990-01-011.913636
11990-02-011.940289
21990-03-011.922636
31990-04-011.960125
41990-05-011.949477
51990-06-011.864524
61990-07-011.833381
71990-08-011.724717
81990-09-011.445579
91990-10-011.230826

Last rows

DATEPORANGUSDM
3512019-04-011.084357
3522019-05-010.986045
3532019-06-011.027250
3542019-07-011.014955
3552019-08-010.993318
3562019-09-011.006300
3572019-10-010.984370
3582019-11-010.981600
3592019-12-010.975905
3602020-01-010.969095